EDITOR’S NOTE AND ACKNOWLEDGEMENTS

The contents of this issue, which brings to a close the previous year’s series of the Journal, continues to reflect the fact that due to celebrating the 100th Anniversary of the Polish Statistical Association (PSA) 2012 year was a special time in Polish and international statistics – at least as far as it was marked by also participation of many distinguished guests from abroad in several meetings of statisticians being held for this occasion.

The first and main part embraces, however, articles traditionally dominating in the journal’s mainstream, i.e., devoted to sampling methods and estimation. It starts with C. Galeone and A. Pollastri’s paper Confidence Intervals for the Ratio of Two Means Using the Distribution of the Quotient of Two Normals which concentrates on the estimator of the ratio of two means defined as a ratio of two random variables normally or asymptotically normally distributed. The importance of the problem emerges from the fact that, according to the authors, generally the approximation to Normal is not satisfied. They propose a new method for building confidence intervals for the ratio of two means which, in contrast to other parametric methods, is worthy to be preferred because it takes into account the skewness in the distribution of the ratio estimator, and the confidence intervals are always bounded. In the next paper, On Classes of Modified Ratio Type and Regression-Cum-Ratio Type Estimators in Sample Surveys Using Two Auxiliary Variables, A. K. P. C. Swain presents a generalized classes of such a type of estimators of the finite population mean in the presence of two auxiliary variables in simple random sampling (given that the population means of the auxiliary variables are known in advance). Certain aspects of the generalized estimators are compared – their biases and efficiencies – both theoretically and in reference to some natural populations.

Another class of estimators that utilize two auxiliary variables is proposed by B. B. Khare, U. Srivastava and K. Kumar in the paper Chain Ratio Estimator for the Population Mean in the Presence of Non-response. Authors found the proposed estimators to be more efficient than the relevant estimators for the fixed values of preliminary sample of size \( n' \) and subsample of size \( n(<n') \) taken from the preliminary sample of size \( n' \) under the specified conditions. The proposed estimators are both more efficient than the corresponding estimators in the case of the fixed cost and have less total cost in comparison to the cost incurred by the corresponding relevant estimators for specified variance. These results are supported by empirical study and Monte Carlo simulation. Two auxiliary variates under double (two-phase) sampling procedure, when the information on another additional auxiliary variate is available along with the main auxiliary variate, are...
also used by S. Choudhury and B. K. Singh in procedures presented in the next paper *A Class of Chain Ratio-Cum-Dual to Ratio Type Estimator with Two Auxiliary Characters under Double Sampling in Sample Surveys*. The asymptotically optimum estimators (AOEs) in the class are identified in two different cases with their biases and variances. The optimum values of the first phase and second phase sample sizes have been obtained for the fixed cost of survey. Theoretical and empirical studies have also been done to demonstrate the efficiency of the proposed estimator with respect to strategies which utilized the information on two auxiliary variates. Also R. Yadav, L. N. Upadhyaya, H. P. Singh, and S. Chatterjee look for *Almost Unbiased Ratio and Product Type Exponential Estimators* using information on auxiliary variate. Authors suggest a generalized version of Bahl and Tuteja (1991) estimator and examine its properties to find that asymptotic optimum estimator (AOE) in the proposed generalized version of Bahl and Tuteja (1991) estimator is biased. Since, at least in some applications, biasedness of an estimator is disadvantageous, they apply the Singh and Singh’s procedure (1993) to derive an almost unbiased version of AOE. A numerical illustration is given in the support of the study’s result.

*A Better Estimator of Population Mean with Power Transformation Based on Ranked Set Sampling* is being sought by N. Mehta (Ranka) and V. L. Mandowara (in the paper entitled this way) to have increased the efficiency of estimate of the population mean. Authors stress that this method is highly beneficial to the estimation based on simple random sampling (SRS), and they present a modified ratio estimator using prior value of coefficient of kurtosis of an auxiliary variable x, with the intention to improve the efficiency of ratio estimator in ranked set sampling.

Each of the papers included in the following set of five articles is either directly (as a congress paper) or indirectly (as a post-congress report) associated with the above mentioned congress of the PSA. The first group is opened by *A Kernel Version of Functional Principal Component Analysis*, by Tomasz Górecki and Mirosław Krzyśko, in which a new construction of functional principal components (FPCA) is proposed based on principal components for vector data. A kernel version of FPCA is also presented and the quality of the two described methods is demonstrated for 20 different data sets.

Artur Mikulec and Aleksandra Kupis–Fijalkowska in *An Empirical Analysis of The Effectiveness of Wishart and Mojena Criteria in Cluster Analysis* discuss the issue of selecting the optimal grouping result in agglomerative cluster analysis, focusing on comparison of the Mojena criteria (the upper tail rule and moving average quality control rule) and the Wishart criteria (tree validation) with other methods, including those proposed by: Baker and Hubert, Calinski and Harabasz, Davies and Bouldin, Hubert and Levine. The results of empirical analysis (that was carried out in ClustanGraphics 8 Program and selected packages in R environment for the generated data sets) are presented...
in the paper. Cluster analysis along with symbolic data are discussed in the article *Symbolic Approach in Regional Analyses* by Justyna Wilk, who addresses some problems with conducting regional research associated with the need to consider such difficulties as large data sets, insufficient precision of phenomena description, disregarding territorial diversification of a given phenomenon, as well as incomplete description of problems. Author suggests solutions to these problems by presenting phenomena in the form of symbolic data. After discussing specific nature of symbolic data, methods for collecting symbolic data and methods for these data analysis, the second part presents an empirical example referring to the assessment of labour market situation in Polish regions (NTS-2) using symbolic data and cluster analysis.

Two papers refer to the congress itself. The first, by Elżbieta Golata (the congress co-organizer), presents a brief report on *The Congress of Polish Statistics to Mark the 100th Anniversary of the Polish Statistical Association Poznań, 18–20 April 2012*. Other meetings that took place during the year-long celebration – including seminars and conferences organized by regional sections of the Polish Statistical Association, such as those in Wroclaw, Lublin, Toruń and Bydgoszcz – are also mentioned. Some illustration of the congress’ sessions is given in *Report on Survey Sampling and Small Area Statistics Sessions during the Congress of Polish Statistics in Poznań* in which Janusz Wywiał and Tomasz Żądło provide information on four sessions on both survey sampling and small area estimation that were organized during the Congress. Altogether fourteen papers in English were presented, including five invited lectures given by Ray Chambers from Wollongong University, Jean-Claude Deville, Lorenzo Fattorini from University of Siena, Malay Ghosh from University of Florida and Li-Chun Zhang from Statistics Norway.

Two different types of information – one by Artur Mikulec and Aleksandra Kupis-Fijalkowska about the XXXI Conference on Multivariate Statistical Analysis (that took place on November 12–14, 2012 in Łódź, Poland), and another by Mirosław Krzyśko, in the form of a historical note on the Mathematical Statistics Group at the Nencki Institute in Warsaw – conclude this issue.
ACKNOWLEDGEMENTS TO REVIEWERS

Andrew Clark, Paris School of Economics, France
Jacek Białek, University of Łódź, Poland
Czesław Domański, University of Łódź, Poland
Wojciech Gamrot, University of Economics in Katowice, Poland
Elżbieta Gołata, University of Economics, Poznań, Poland
Henryk Gurgul, AGH University of Science and Technology, Kraków, Poland
Cem Kadilar, Hacettepe University of Ankara, Turkey
Jan Kordos, Warsaw Management Academy, Warsaw School of Economics, Poland
Barbara Kowalczyk, Warsaw School of Economics, Poland
Marcin Kozak, University of Information Technology and Management in Rzeszów, Poland
Mirosław Krzyśko, Adam Mickiewicz University, Poznań, Poland
Sunil Kumar, Indian Statistical Institute, Kolkatta, India
Janis Lapins, Statistics Department, Bank of Latvia, Riga, Latvia
Andrzej Młodak, Statistical Office Poznań, Poland
Jerzy Mika, University of Economics in Katowice, Poland
Jerzy Moczek, Poznań University of Medical Sciences, Poland
Natalia Nehrebecka, University of Warsaw, Poland
Uwe Neumann, Rheinisch-Westfälisches Institut für Wirtschaftsforschung (RWI), Essen, Germany
Włodzimierz Okrasa, Central Statistical Office of Poland, and Cardinal Stefan Wyszyński University in Warsaw
Aloy Onyeka, Federal University of Technology, Owerri, Nigeria
Walenty Ostasiewicz, Wrocław University of Economics, Poland
Agnieszka Rossa, University of Łódź, Poland
Pawel Strzelecki, Warsaw School of Economics, and National Bank of Poland
Mirosław Szreder, University of Gdańsk, Poland
Junmin Wan, Peking University, China
Jacek Wesołowski, Central Statistical Office of Poland, and Warsaw University of Technology, Poland
Janusz Wywiał, University of Economics in Katowice, Poland
Bohdan Wyżniakiewicz, Central Statistical Office of Poland
Rohini Yadav, Banaras Hindu University, Varanasi, Uttar Pradesh, India
Tomasz Żądło, University of Economics in Katowice, Poland